Convex polygon

Results: 120



#Item
71Polyhedron / Convex and concave polygons / Vertex / Fold / Straight skeleton / Pseudotriangle / Geometry / Polygons / Simple polygon

Making Polygons by Simple Folds and One Straight Cut Erik D. Demaine∗ Martin L. Demaine∗ ∗ Po-Ru Loh Shelly Manber∗

Add to Reading List

Source URL: erikdemaine.org

Language: English - Date: 2010-11-09 22:19:16
72Convex analysis / Convex geometry / Computational geometry / Regular polygon / Convex hull algorithms / Vertex / Convex hull / Dual polyhedron / Internal and external angle / Geometry / Polygons / Euclidean plane geometry

CS 157: Assignment 6 Douglas R. Lanman 8 May 2006 Problem 1: Evaluating Convex Polygons This write-up presents several simple algorithms for determining whether a given set of twodimensional points defines a convex polyg

Add to Reading List

Source URL: mesh.brown.edu

Language: English - Date: 2006-05-07 23:58:40
73Euclidean plane geometry / Convex analysis / Discrete geometry / Voronoi diagram / Markov chain / Regular polygon / Convex hull / Markov process / Square / Geometry / Computational geometry / Polygons

Convex Hull Asymptotic Shape Evolution Maxim Arnold, Yuliy Baryshnikov and Steven M. LaValle University of Illinois, Urbana, IL 61801, USA; (MA: Institute for Information Transmission Problems, Moscow, Russia). Email: {m

Add to Reading List

Source URL: msl.cs.uiuc.edu

Language: English - Date: 2012-04-29 22:52:13
74Convex and concave polygons / Star polygon / Polygon triangulation / Geometry / Polygons / Polygon

GeoLib Polygon Operations Document version 1.0 © GeoLib www.geolib.co.uk

Add to Reading List

Source URL: www.geolib.co.uk

Language: English - Date: 2011-01-22 13:46:31
75Simple polygon / Star-shaped polygon / Convex and concave polygons / Vertex / Angle / Star polygon / Geometry / Polygons / Monotone polygon

[11] G. T. Toussaint, “On translating a set of spheres” Technical Report SOCS-84.4, School of Computer Science, McGill University (March, [removed]]

Add to Reading List

Source URL: www-cgrl.cs.mcgill.ca

Language: English - Date: 2004-10-19 17:38:45
76Convex and concave polygons / Polygon / Rotating calipers / Monotone polygon / Convex hull / Star-shaped polygon / Godfried Toussaint / Vertex / Polyhedron / Geometry / Polygons / Simple polygon

GACT Symposium, Los Angeles, California[removed]G. T. Toussaint, Solving geometric problems with the rotating calipers, Proc. MELECON’83, Athens (May[removed]]

Add to Reading List

Source URL: www-cgrl.cs.mcgill.ca

Language: English - Date: 2002-08-07 16:32:08
77Polytopes / Monotone polygon / Polyhedron / Dual polyhedron / Convex hull / Regular polytope / Toroidal polyhedron / Geometry / Polyhedra / Polygons

[41] B. Chazelle, “The polygon containment problem”, in Computational Geometry, Ed., F. P. Preparata, Advances on Computing Research, vol. 1, JAI Press, Inc., 1983, pp[removed]]

Add to Reading List

Source URL: www-cgrl.cs.mcgill.ca

Language: English - Date: 2004-10-19 17:29:51
78Computational geometry / Discrete geometry / Godfried Toussaint / Image processing / Voronoi diagram / Convex hull / Simple polygon / Nearest neighbor search / Polygon / Geometry / Mathematics / Information science

between two crossing convex polygons,” Computing, vol. 32, 1984, pp[removed]To85a] Toussaint, G. T., ed., Computational Geometry, North-Holland, [removed]To85b]

Add to Reading List

Source URL: www-cgrl.cs.mcgill.ca

Language: English - Date: 2002-06-13 17:56:46
79Curves / Point in polygon / Convex geometry / Vertex / Convex and concave polygons / Diagonal / Simple polygon / Complex polygon / Geometry / Polygons / 3D computer graphics

SOLID AREA SCAN-CONVERSION Prof. Neha Mukesh Srivastava Polygons 2

Add to Reading List

Source URL: myitweb.weebly.com

Language: English - Date: 2011-09-22 13:11:43
80Self-dual polyhedra / Polyhedra / Johnson solids / Deltahedra / Platonic solids / Hexagonal pyramid / Pyramid / Pentagonal pyramid / Tetrahedron / Geometry / Convex geometry / Euclidean geometry

Pyramids 3D objects or solids A pyramid is a 3D object. It has any polygon as its base. Its other faces are triangles that meet in a point. A pyramid is named after its base, eg a triangular pyramid has a triangle for it

Add to Reading List

Source URL: www.det.nsw.edu.au

Language: English
UPDATE